BonLab wins awards and prizes for Innovative Research

The BonLab team has recently won a number of awards and prizes in recognition for their innovative research in the field of polymer colloid science.

In April 2019 at the RSC/SCI Rideal Lecture in honour of prof. Peter Lovell Sam Wilson Whitford won the RSC Soft Matter poster prize for his work on microcapsules based on supramolecular waxes. At the same meeting Matt Donald won the RSC Polymer Chemistry poster prize for his work on the mechanistic aspects of vinyl acetate emulsion polymerization.

In May 2019 Wai Hin Lee was awarded a prestigious Warwick International Chancellor’s Scholarship to continue his PhD in complex 2D colloidal materials. Brooke Longbottom was awarded a Warwick University faculty of science PhD thesis prize for his outstanding contributions to the field of “active” colloidal particles.

In June 2019 Andrea Lotierzo was awarded best PhD student presentation at the International Polymer Colloids Group Conference in Singapore, for his work on the synthesis of Janus, patchy and armored latex particles.

Prof.dr.ir. Stefan Bon, leader of the BonLab, says: “ I am delighted with our recent awards and prizes and I am proud of the achievements of Sam, Matt, Wai, Brooke and Andrea. They all have worked tremendously hard with dedication and enthusiasm and all are the reason why BonLab continues to innovate in science”

Join BonLab as a PhD student in 2019

We are looking for enthusiastic and dedicated people to join the BonLab as a PhD student. Start dates are October 2019. Do you have what it takes to work at the forefront in supracolloidal chemical engineering? 

You will be working under guidance of prof.dr.ir. Stefan A. F. Bon on an exciting 4 year project in collaboration with industry in the area of polymer and colloid science. We have a number of opportunities available in my team:

project 1: Next generation sustainable polymer colloids

This projects deals with the fabrication of sustainable polymer colloids and capsules and their use as building blocks for a range of supracolloidal materials. We will look at alternatives to free radical polymerization methods under the tentative title: “oh, but its not microplastics”. Not only will we look at innovative fabrication methods, we will look at the formulation process involved during the processing into colloidal products, and we will characterize the physical and mechanical properties of the materials made.

project 2:  Dynamic Polymer Materials

We have interest in how dynamic macromolecules and colloidal particles that have the ability to form reversible networks can form liquid-based formulations with interesting rheological and features. The project focusses on the synthesis of polymer molecules and particles thereof, and the underlying soft matter physics on how these behave in liquids under shear. Key is to program soft materials and make them communicate.

Enquiries, which should include a CV with the names of two referees, should be made to prof.dr.ir. Stefan A. F Bon (s.bon@warwick.ac.uk)

Requirements:

An eligible student must hold, or be predicted to obtain, at least a 2.1 4-year degree in Chemistry, Chemical Engineering, Physics, or an equivalent scientific discipline. Exceptional students with a 3 year BSc degree will also be considered. This studentship is open to UK and EU nationals and those of equivalent status* (fees paid, plus annum stipend). Availability is for 4 years beginning April 2019 up to a start date of 1st October 2019.

*Please note - ELIGIBILITY - Applicants from outside the EU are not eligible for this post due to restrictions on funding. However, if interested we can try to find a way to bridge the funding gap.

 

 

Innovation in Emulsion Polymerization process opens window to Janus and patchy particles

Innovation in Emulsion Polymerization process opens window to Janus and patchy particles

Emulsion polymerization is of pivotal importance as a route to the fabrication of water-based synthetic polymer colloids. The product is often referred to as a polymer latex and plays a crucial role in a wide variety of applications spanning coatings (protective/decorative/automotive), adhesives (pressure sensitive/laminating/construction), paper and inks, gloves and condoms, carpets, non-wovens, leather, asphalt paving, redispersible powders, and as plastic material modifiers.

Since its discovery in the 1920s the emulsion polymerization process and its mechanistic understanding has evolved. Our most noticeable past contributions include the first reversible-deactivation nitroxide-mediated radical emulsion polymerization (Macromolecules 1997: DOI 10.1021/ma961003s), and the development and mechanistic understanding of Pickering mini-emulsion (Macromolecules 2005: DOI 10.1021/ma051070z) and emulsion polymerization processes (J. Am. Chem. Soc. 2008: DOI 10.1021/ja807242k). The latest on nano-silica stabilized Pickering Emulsion Polymerization from our lab can be found here.

One quest in emulsion polymerization technology that remains challenging and intriguing is control of the particle morphology. It is of importance as the architecture of the polymer colloid influences its behavioural properties when used in applications. We now report in ACS Nano an elegant innovation in the emulsion polymerization process which makes use of nanogels as stabilizers and allows us to fabricate Janus and patchy polymer colloids.